A kinetic model of non-photochemical quenching in cyanobacteria.

نویسندگان

  • Maxim Y Gorbunov
  • Fedor I Kuzminov
  • Victor V Fadeev
  • John Dongun Kim
  • Paul G Falkowski
چکیده

High light poses a threat to oxygenic photosynthetic organisms. Similar to eukaryotes, cyanobacteria evolved a photoprotective mechanism, non-photochemical quenching (NPQ), which dissipates excess absorbed energy as heat. An orange carotenoid protein (OCP) has been implicated as a blue-green light sensor that induces NPQ in cyanobacteria. Discovered in vitro, this process involves a light-induced transformation of the OCP from its dark, orange form (OCP(o)) to a red, active form, however, the mechanisms of NPQ in vivo remain largely unknown. Here we show that the formation of the quenching state in vivo is a multistep process that involves both photoinduced and dark reactions. Our kinetic analysis of the NPQ process reveals that the light induced conversion of OCP(o) to a quenching state (OCP(q)) proceeds via an intermediate, non-quenching state (OCP(i)), and this reaction sequence can be described by a three-state kinetic model. The conversion of OCP(o) to OCP(i) is a photoinduced process with the effective absorption cross section of 4.5 × 10(-3)Ų at 470 nm. The transition from OCP(i) to OCP(q) is a dark reaction, with the first order rate constant of approximately 0.1s(-1) at 25°C and the activation energy of 21 kcal/mol. These characteristics suggest that the reaction rate may be limited by cis-trans proline isomerization of Gln224-Pro225 or Pro225-Pro226, located at a loop near the carotenoid. NPQ decreases the functional absorption cross-section of Photosystem II, suggesting that formation of the quenched centers reduces the flux of absorbed energy from phycobilisomes to the reaction centers by approximately 50%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strategy of Protection of Oxygenic Photosynthesis against Intense Light

The pathways of energy dissipation of excessive absorbed energy in cyanobacteria in comparison with that in higher plants are discussed. Two mechanisms of non-photochemical quenching in cyanobacteria are described. In one case this quenching occurs as light-induced decrease of the fluorescence yield of long-wavelength chlorophylls of the photosystem I trimers induced by inactive reaction center...

متن کامل

Phycobilin/chlorophyll excitation equilibration upon carotenoid-induced non-photochemical fluorescence quenching in phycobilisomes of the cyanobacterium Synechocystis sp. PCC 6803.

To determine the mechanism of carotenoid-sensitized non-photochemical quenching in cyanobacteria, the kinetics of blue-light-induced quenching and fluorescence spectra were studied in the wild type and mutants of Synechocystis sp. PCC 6803 grown with or without iron. The blue-light-induced quenching was observed in the wild type as well as in mutants lacking PS II or IsiA confirming that neithe...

متن کامل

اثر شدت تابش بر تحمل به سرمای سویا [Glycine max (L.) Merr.] با استفاده از روش فلورسانس کلروفیل

In order to evaluate the effects of both cold and light stresses on chlorophyll fluorescence and feasibility of using chlorophyll florescence technique to evaluate effect of light intensity on cold tolerance in soybean, an experiment was done in a factorial arrangement based on a completely randomized design with three replicates. Two soybean cultivars consisted of 032 and BP grown under greenh...

متن کامل

Light harvesting and blue-green light induced non-photochemical quenching in two different C-phycocyanin mutants of Synechocystis PCC 6803.

Cyanobacteria are oxygen-evolving photosynthetic organisms that harvest sunlight and convert excitation energy into chemical energy. Most of the light is absorbed by large light harvesting complexes called phycobilisomes (PBs). In high-light conditions, cyanobacteria switch on a photoprotective mechanism called non-photochemical quenching (NPQ): During this process, absorption of blue-green lig...

متن کامل

تاثیر همزیستی قارچ اندوفیت بر برخی شاخصهای فیزیولوژیک گیاه گوجه‌فرنگی تحت تنش شوری 10 روزه

The influence of endophyte fungus piriformospora indica on characteristics of the growth, water status, photosynthetic pigments concentration, gas exchange, and chlorophyll fluorescence of tomato plants under salt stress (0, 50, 100 and 150 mM) was studied in the greenhouse. Under salt stress, mycorrhizal tomato plants had higher dry weight of shoot and root, higher height, higher carotenoid an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochimica et biophysica acta

دوره 1807 12  شماره 

صفحات  -

تاریخ انتشار 2011